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Abstract-An analysis for a stiffened plate with arbitrarily oblique and equally spaced eccentric
stiffeners is proposed. In this analysis, the joint effects of stiffeners by the interaction of the plate
and stiffeners are taken into account and the effects of stiffeners are not considered as discrete
members, but their effects are averaged or "smeared out" over the plate. The equilibrium equations
and boundary conditions are derived by applying the principle of minimum potential energy. In
cases where the orthogonally and symmetrically oblique stiffened plates with simply-supported four
edges are subjected to a uniform lateral load, the rigorous values of the midpoint deflection of the
plate obtained by considering the joint effects are compared with those values obtained by neglecting
the joint effects. For both stiffening cases, the equivalent rigidities which are used in the Huber-type
equilibrium equation are determined by assuming that the gradients of the in-plane stress resultants
are zero and these are compared with the values obtained by using the concept ofadjusted centroids.
The approximate solutions obtained by using these equivalent rigidities are compared with the
rigorous values for both stiffening cases with simply-supported four edges under uniform lateral
loads.

l.INTRODUCIlON

The stiffened plate is a common structural form in buildings, bridges, ships and aircraft. In
general, stiffened plates with conventional (orthogonal) stiffening or symmetrically oblique
stiffening by closely spaced stiffeners can be regarded as an equivalent plate of uniform
thickness in which the effects of stiffeners are averaged or smeared out over the area of the
plate.

The application of classical flexural theory of elastic thin plates of homogeneous
orthotropic material to the problem of orthogonally stiffened plates was first suggested by
Huber (1923). He presented expressions for the flexural rigidities which are used in the
orthotropic plate equations. The orthotropic plate theory based on the Huber equation has
since been applied to the analysis ofgrid systems and orthogonally stiffened plates (Giencke,
1955; Huffington, 1956; Massonet, 1959; Cusens et al., 1972; Nishino et al., 1974;
Hasegawa et aI., 1975).

In many structures like bridge decks, the stiffeners are placed on one side of the plate
only. If the stiffeners are placed only on one side of the plate, the eccentricities of the
stiffeners must be taken into account because of the strains in the middle surface of the
plate. Hence, the calculation of the stiffness coefficients with respect to the unknown neutral
surface complicates the problem. An improved theory which considers the extensibility of
the middle plane of the plate which introduced additional shear stresses was first formulated
by Pfliiger (1947) for the treatment of buckling problems of stiffened plates. The governing
differential equations are expressed in terms of the in-plane as well as transverse dis­
placement components of the middle surface of the plate. This theory has been applied to
the stiffened plate problems by many investigators (Trensk, 1954; Giencke, 1955; Clifton
et aI., 1956; Massonet, 1959; McElman et al., 1966; Srinivasan and Thiruvenkatachari,
1985).

Most of above investigations have been treated by neglecting the joint effects of
stiffeners in the orthogonal stiffening case and only a few authors have considered them on
the equivalent rigidities in the orthogonal stiffening case (Cusens et al., 1972; Nishino et
al., 1974; Hasegawa et al., 1975). For the symmetrically oblique stiffening case, a few
papers are available (Dow et al., 1954; Meyer, 1967; Karmakar, 1979) and to the author's
knowledge, there is no literature on a stiffened plate with arbitrarily oblique stiffeners in
which the joint effects of the stiffeners are considered.
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In this study, a stiffened plate with arbitrarily oblique and equally spaced eccentric
stiffeners is treated. In formulating the potential energy of the system, the stiffness
coefficients are obtained by smearing out the effects of the stiffeners under the assumption
that the plate and stiffeners behave as a monolithic structure. The equilibrium equations in
which the eccentricity and the joint effects of the stiffeners are taken into account are derived
by applying the principle of minimum potential energy.

The closed-form solutions of the midpoint deflections for the orthogonally and sym­
metrically oblique stiffened, rectangular plates with simply-supported edges subjected to a
uniform lateral load are obtained and the midpoint deflections obtained by including the
joint effects are compared with those values obtained by neglecting the joint effects.

The equivalent rigidities of the stiffened plate are determined by assuming that the
gradients of the in-plane stress resultants are zero and these values are compared with those
values obtained by different means, namely, by using the concept of adjusted centroids. For
both stiffening cases, the approximate solutions which are obtained by using these equivalent
rigidities are compared with the closed-form solutions.

2. DERIVATION OF EQUATIONS

Figure I shows the configuration of the stiffened plate with arbitrarily oblique and
equally spaced eccentric stiffeners and Fig. 2 shows a typical element of the oblique stiffeners
with rectangular cross-sections. In analyzing deformations of the infinitesimal element, the
following are assumed in addition to the basic assumptions which are used in linear plate
theory.

(a) The stiffeners are closely and equally spaced on one side of the plate with arbitrary
angles.

b

a

Fig. 1. Rectangular plate with equally spaced and arbitrarily oblique eccentric stiffeners.

Fig. 2. Detail ofthe skew element, indicated in Fig. 1.
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(b) The state ofstress of the stiffeners is biaxial at the joints of two intersecting stiffeners
and uniaxial elsewhere.

(c) The plate and stiffeners act as a monolithic element for shear deformation and the
continuity condition is satisfied in the contact areas between the plate and the intersection
parts of the stiffeners.

Strain-displacement relations
In orthogonal Cartesian coordinates, the strains ex, ey and Yxy in a plate at a distance

z from the middle plane of the plate can be written as

ex = e2 - ZW,xx

°ey = ey - ZW,yy

Yxy = Y2y-2zw,xy (1)

where strains e2, e~ and y~v in the middle plane of the plate are represented by the dis­
placements u, v and W as follows:

eO = U.t .x

eO = vy ,y

y2y = u.y+v,x' (2)

The strains e.. ep and Y.p in the plate at a distance Z from the middle plane of the plate
are expressed in oblique coordinates as shown in Fig, I :

e. = e2-zw.••

ep = e3 - zW,pp

Y.p = y2p- 2zw,.p (3)

where

n l e~'O. sin2 O.
,in 0, eo, O']n

e3 = cos2 0p sin2 0p sin Op cos Op 8~ (4)

y~P cos O. cos Op 2 sin O. sin Op sin (O.+Op) y2y

and

r} [ 00"0.
sin2 O. ,in 20, r~]

w" = cos2 0p sin2 0p sin 20, W,yy' (5)

w,., cos O. cos 0, sin O. sin Op sin (0",+0,) w,xy

Stress-strain relations
The stress-strain relations for the plate are expressed in orthogonal Cartesian coor­

dinates:

E
(1x = -1--2 (ex +vey)-v

E
(1y = -1--2 (ey+V8x )'

-v
(6)
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In oblique coordinates, the stress-strain relations are expressd as (see, e.g., Argiris,
1966):

(7)

where

All = 1

A 12 = A 2 I = cos2 </J - v sin2 </J

A 13 = A 3 I = 2 cos </J

All = 1

An = An = AI)

An = 2(I+v)sin2 </J+4cos2 </J. (8)

From assumption (b), if the stiffeners are subjected to axial forces resulting in uniformly
distributed stresses (/. and (/(1' the strains 8. and 8(1, which are averaged over the stiffener
lengths, can be given by

(9)

where

From eqns (7) and (9), (/. and (/(1 can be expressed as:

(/. = E(A I 8.+A 28(1+A 3y.(1)

(/(1 = E(B.8.+B28(1+B3y.(1)

where

(10)

(II)
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(12)

From assumption (c). if the stiffeners resist the horizontal shear forces. the shear stress
of the grid system on the horizontal section ix, can be expressed by:

Txy =~Gyxy (13)

where

Yx, = (1'2, - 2zw,x,)

,= ''Ix'1p . (14)
'13 +'1p

The shear forces of the grid system can be assumed to be transmitted through the
normal stresses in the stiffeners since the shear stresses may be carried by the plate alone
when the stiffeners are connected with a coherent plate (see. e.g., Fliigge. 1973) and from
eqn (13). the normal stresses aa. and ap in the oblique stiffeners can be given by (Morley.
1963) :

iia. = -~G cosec cP sin 28py.ry

ap = -~G cosec cP sin 28"yxv- (15)

Energy expressions
If the displacements in the plate and stiffeners are continuous and the effects of the

stiffeners are averaged over the plate. from eqns (11) and (15). the strain energy of the
oblique stiffeners Ust in which the joint effects of stiffeners are considered can be taken as

USl=~ [a [b{; [ (O'a.+a")e,,dAa. + ~ [ (O'/l+up)epdA pJo Jo "JA. PJA,8

+0 [~: (w~,,)2 +~ (w,fJ,)2]} dx dy (16)

where Aa. and Ap are the cross-sectional areas of the stiffeners in the ex and fJ directions.
respectively. and la. and lp are their torsional constants. which are given in the Apppendix.
The strain energy of the unstiffened plate Up is represented as
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D(a(2[ 2 2 (I-v) 2J+ 2 Jo Jo w,x.• +2vw,xxw,yy +W,yy + -2-w,xy dx dy

where

Et
C = (I-v2)

Et l

D = 12(1 _v2)"

The potential energy Vq of the external lateral load q is represented as

Vq = qrrwdxdy.

The total energy of the stiffened plate, 11, can be expressed as

(17)

(18)

(19)

(20)

Substituting eqns (I), (3), (4) and (5) into eqn (16) and then from eqns (16), (17), (19) and
(20), 11 can be expressed as follows:

in which

1iaib iaib

11 = ;;; {e}'[C]{e} dx dy-q w dx dy
- (I (I (I (I

{ } _ {o 0 0 }le - ex, ey, Yxy, -W,xx, -w,yy, -w,xy

(21)

(22)

and the coefficients Cij of the stiffness matrix [C] are given in the Appendix. The Cij are the
same as those obtained by Brush and Almroth (1975) for the orthogonal stiffening case
(82 =90°, 8{J = 0° or 82 = 0°, 8p = _90°) and Cij for the symmetrically oblique stiffening
case (82 = -8p = 8s ), in which the joint effects are not considered, are the same as those
obtained by Karmakar (1979).

Equilibrium equations and associated boundary conditions
By substituting eqn (2) into eqn (21) and then taking the first variation of eqn (21)

with respect to the displacements u, v and w, we obtain the three equilibrium equations for
the stiffened plate with arbitrarily oblique stiffeners:

[CI1U,x +C 12v,y +C 13 (u,y +v,x) - C I4 W,xx - C1Sw,yy - C l6W,xylx

+ [C3I U,x+ C 32v,y +C 33 (U,y + v,x) - C 34W,xx - C 35 w,YJ - C 36W,xyl,y = 0

[C2I U,x+ C 22V,y+ C23 (u,y +v,x) - C24W,xx - C 2S w,yy - C26W,xy],y

+ [C 31 U,x +C 32v,y +C 33 (u,y+v,x) - C 34 W,xx - C 35 w,yy - C36W,xy],x =0

[C4I U,x+ C42V,y +C43 (U.y+v,x) - C44W,xx - C4S w,YJ - C 46W,xy],xx

+ [C6I U,x +C 62V,y +C63 (U,y +v,x) - C 64 W,xx - C 6S w,yy - C66 W,xy],xy

+ [CS1u,x +CnV,y +Cn(U,y + v,x) - C S4 w,xx - Cssw,yy - C S6 w,xy],yy = -q. (23)

The boundary conditions are given in the Appendix.
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3, SOLUTIONS OF ORTHOTROPIC PLATES

From eqn (23), equilibrium equations which can be used for orthogonal stiffening and
symmetrically oblique stiffening with the orthotropic behavior are obtained as follows:

[C11U•• +C I2 L',y - CI4 W.u - C ISWSYl..+ [C33 (u,Y +v.x) - C36W,xyly = 0

[C21U,x +C22V,y - C24W.u - C2sw,)'}ly + [C33 (U.y + v,x) - C36W,x.vL = 0

[C41 U,.• +C42V,y - C44 W.XX - C4S w,y.vLx + [C63(U" + v,x) - C66 w.xyL..

+ [CSIU.x+C52V"-CS4W,xx-Cssw,,,},y.. = -q. (24)

The closed-form and approximate solutions of the governing differential equation for
orthotropic plates under various natural and geometric boundary conditions have been
presented by several investigators (Trenks, 1954; Clifton et al., 1956). Herein, the double
series solutions and approximate solutions by the Huber-type equation (Huber, 1923) for
the case of a simply-supported rectangular orthotropic plate under the lateral load are
examined.

Closed-form solution
The displacement functions u, v and w for the simply-supported boundary condition

can be assumed as follows:

a;; a;;. m1tx . n1ty
U = L L UmnCps-smT

m= I n= I a

00 00 m1tx n1ty
v = L L Vmn sin cos -b

m= I n= I a

00 00 • m1tx . n1ty
W= L L Wmnsm-sm-

bm=l n=! a
(25)

in which Umn, Vmn and Wmn are constants. The load q can be represented as a double sine
series

00 00 m1tx n1ty
q = L L Qmnsin-sinT

m=! n=! a

in which the coefficients Qmn is given by

4 (0 (b m1tx n1tx
Qmn = ab Jo Jo q(x,y) sin -a- sin T dxdy.

In eqn (27), Qmn for the uniformly distributed lateral load qis given as

16q
Qm" =-2- (m,n = 1,3, ...).

1t mn

(26)

(27)

(28)

Substituting eqns (25) and (26) into eqn (24), a set of three linear equations in the three
unknowns Um,,' Vmn and W1M can be obtained for each combination of m and n. This linear
system can be put into the following form :

(29)



786 CHONG lIN WO!'i

and the elements of the matrix [B] are given by

B Il = (C\~+C33)riin

B I3 = -C\4rii3_(CIS+C36)riin2

B 21 = B I2

Bn = C 33 rii
2
+Cn n 2

B2) = -C2Sn3_(CIS+C36)rii2n

B 3 \ = B I3

B 32 = B23

B33 = C 44rii4+ (2C4S + C 66 )rii2n 2+ C ssn 4 (30)

where rii = m1t/a and n= n1t/b. The complete solution is obtained by substituting the values
Umn , Vmn and Wmn obtained from eqn (29) into eqn (25).

Approximate solution by a Huber-type equation
Several approximate theories have been developed by introducing additional assump­

tions so that the governing differential equations may be simplified. Most of these approxi­
mate theories lead to a Huber-type equation as follows:

Dx W,xXX.< +2Hw.xxyy +DyW,yyyy = q (31)

where the constants Dx and Dy represent the bending rigidities in the x and y directions.
The constant H is computed from the torsional rigidity and Poisson's ratio of the plate.

One of the widely accepted approximate methods for determining the equivalent
rigidities is to assume that the normal strain is zero at the adjusted centroid of the cross
section in each direction (Giencke, 1955). Another method is to use the assumption that
the gradients of the in-plane stress resultants are zero (Hasegawa et al., 1975). From eqn
(24), the equivalent rigidities by the latter method are obtained as the following. The three
equilibrium equations for the bending of the thin plate which are represented with the stress
resultants can be given by

where

Nx..<+Nxy.y = 0

N xy.x +Ny,y = 0

Mx,xx +2Mxy.xy +My,yy = -q

N x = CIIU.x+CI2V,y-CI4W.xx-CISW,yy

Ny = C2IU.x+C22V,y-C24W"U-C2SW,yy

N.<y = C 33 (u,y+v,x)-C36 W"<y

M x = C 4I U.x+ C 42V,y- C44W.xx- C 4S w.yy

My = CSIU.x+CS2V,y-CS4W"U-CS5W,yy

M xy = [C63 (U,y+v.x) - C 66 W"<y]/2,

(32a)

(32b)

(32c)

(33a)

(33b)

(33c)

(33d)

(33e)

(330
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From eqns (33a, b,c), U,x, V,y and (u,y+v.,) can be given by

U,x = e:w,xX-eyxw,yy+CINx-C3Ny

V,y = e~w,yy-eXyw,xx+C2Ny-C3N.,

C36 Nxy
U,y+v,x = -C W.,y+-

33 C33

where

C
_ CII

2 - 2
CIIC22-CI2

C
_ CI2

3 - C C c2 '
II 22- 12

787

(34)

(35)

Substituting eqn (34) into eqns (33d, e, f), from eqns (33d, e, f) and (32c), the following is
obtained:

where

Dx = C44+C42exy-C4Ie:

Dy = C55+CSleyx-Cne~

2H= 2Dxy+D I +D2

( C~6)1Dxy = C66 - C
33

2

D. = C45+C4Ieyx-C42e~

D 2= C54+Cnexy-C51e:

C36
Da = C4ICI-C42C3--C

33

Db = C42C2-C41C3

Dc = CSICI-CnC3

(37)
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hylt

Fig. 3. Joint effects on closed-fonn solutions ofthe midpoint deflection for the orthogonally stiffened,
rectangular plate with simply-supported edges under the unifonn lateral load (hi< = by = t, hi< = hn
d, = d, = lOt). The curve shows the midpoint deflection Wm,. where the joint effects of the stiffeners
are taken into account nonnalized by the value w... where the joint effects are neglected for the

stiffener height h,.it.

By assuming that the gradients of the stress resultants are zero, eqn (36) can be used as the
Huber-type equation.

The equivalent rigidities obtained by Giencke (1955) are given in the Appendix.
In the case of a simply-supported rectangular orthotropic plate under a lateral load

q(x,y), the displacement w is represented as

4 OC! 00 ib fa [ q(x,y) sin (mx) sin (fly) ] . _ . _
W = -b I: I: (-4)D 2H( - 2 -2) (-4)D dx dy' Sin (mx) Sin (ny).a m.. I n~ I 0 0 m ex + m n + n y

(38)

In the case ofa uniformly distributed load q, from eqns (26), (27) and (38), wis written
as

(39)

4. NUMERICAL RESULTS AND DISCUSSION

Numerical results are obtained in order to study the joint effects of stiffeners for the
orthogonal and symmetrically oblique stiffening cases. In all cases, the stiffeners have
rectangular cross-sections and the breadths of the stiffeners and the spacing between stiff­
eners are constant (Le. bx =by = t, dx =dy = lOt for the orthogonal stiffening case,
ba. =bp( = bs ) = t, d" = dp( = ds) = lOt for the symmetrically oblique stiffening case). The
equivalent bending and torsional rigidities are obtained by two methods, i.e. one by using
the concept ofadjusted centroids (method A) and the other by assuming that the gradients
of the in-plane stress resultants are zero (method B).

Joint effects on the closed-Jorm solution
Figures 3 and 4 show the ratios of the midpoint deflection of the plate obtained

rigorously by considering the joint effects (wmc) to those obtained by neglecting them (wmn)
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... 8t
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0.95 +-......T"""",.....,I""""I'-...-.--r-.....T""".,.....,r--r-r-r--r""T'-1
o 10 20 30 40 50 60 70 80 90

Stiffening Angle Bs

Fig. 4. Joint effects on closed-form solutions of the midpoint deflection for the symmetrically oblique
stiffened, rectangular plate with simply-supported edges under the uniform lateral load (b, = I,

d, = lOt). The curve shows the midpoint deflection w_ where the joint effects of the stiffeners are
taken into account normalized by the value w... where the joint effects are neglected for the stiffening

angle 8, and the stiffener height h,.

for various stiffener heights and stiffening angles in both stiffening cases with simply­
supported four edges under uniform lateral loads. From Fig. 3, it is observed that in the
orthogonal stiffening case, the ratio decreases with increasing hyl t and it becomes almost
constant for hy/t greater than 5. From this, it can be seen that the midpoint deflection can
be reduced when the joint effects of stiffeners are considered for this case. Similarly, in Fig.
4, it can be observed that the ratio decreases with increasing hslt and it becomes almost
constant for each stiffening angle.

Joint effects on the equivalent rigidities
Figure 5 shows the equivalent bending rigidity Dx , normalized by the bending rigidity

of the unstiffened plate D for various stiffener heights in the orthogonal stiffening case.

300 ... Method A(without joint ."ect)

250 00- Method B (without joint effect)... Method A (wI1h joint effect)... Method B (wI1h joint effect)
200

~
0 150

100

50

0
0 2 3 .. 5 6 7 8 9 10

hy/l

Fig. S. Joint effeCts on the equivalent bending rigidity Dx for the orthogonally stiffened, rectangular
plate (bx '"' b. '"' t, hx '"' h., dx = d. = lOt). The curve shows Dx normalized by the bending rigidity
D of the unsiiffened plate" for the stiffener height h./t. The solid lines with diamonds and with dolled
rectangles represent the results obtained by negleCting the joint effects of stiffeners and by including
those values from the concept of the adjusted centroid, respectively, and the solid lines with
rectangles and with triangles represent the results obtained by neglecting the joint effects of stiffeners
and by including those values from the assumption that the gradient of the in-plane stress resultant

is zero, respectively.
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50

40

30

20

10

... Method A (without joint effect)
-Do Method B (without joint effect)
• Method A (with joint effect)
... Method B (with joint effect)

o-I--r-.................,--.-.,............,.-....-r=~-_1:Ip
o 10 20 30 40 50 60 70 80 90

Stiffening Angle 88

Fig. 6. Joint effects on the equivalent bending rigidity Dx for the symmetrically oblique stiffened,
rectangular plate (b, = t, h, =4t, d., = lOt). The curve shows Dx normalized by the bending rigidity
D of the unstiffened plate for the stiffening angle 6,. The solid lines with diamonds and with dotted
rectangles represent the results obtained by neglecting the joint effects ofstiffeners and by including
those values from the concept of the adjusted centroid, respectively, and the solid lines with
rectangles and with triangles represent the results obtained by neglecting the joint effects ofstiffeners
and by including those values from the assumption that the gradient of the in-plane stress resultant

is zero. respectively.

Figures 6 and 7 show Dx for various stiffening angles and stiffener heights, respectively, in
the symmetrically oblique stiffening case. In Fig. 5, it can be observed that as the stiffener
height increases, the equivalent bending rigidity increases and it is also seen that the rigidities
obtained by method A are almost the same as those by B and the joint effects are insignifi·
cant. In Figs 6 and 7, it can be observed that the behavior in the case of symmetrically
oblique stiffening is similar to that in Fig. 5 for various stiffening angles but the rigidities
by method A are a little larger than those by B and the discrepancy increases as the stiffener
height increases.

Figure 8 shows the equivalent torsional rigidity DxY' normalized by the torsional
rigidity of the unstiffened plate Dxy(iso.) (= GI3/6) for various stiffener heights in the orthog·
onal stiffening case, and Figs 9 and 10 show the results for various stiffening angles and

180

160 ... Method A (without joint effect)
-Do ....thod B (WIthout joint effect)

140 • Method A (WIth joint effect)

120 ... Method B (with joint effect)

~
100

0 80

60

40

20

0
0 2 3 4 5 6 7 8 9 10

hstt

Fig. 7. Joint effects on the equivalent bending rigidity Dx for the symmetrically oblique stiffened,
rectangular plate (b. '" t, d. '" lOt, e. '" 45°). The curve shows D.• normalized by the bendin,rigidity
D of the unstiffened plate.for the stiffener height h.lt. The solid lines with diamonds and with dotted
rectangles represent the results obtained by neglecting the joint effects ofstitfeners and by including
those values from the concept of the adjusted centroid, respectively, and the solid lines with
rectangles and with triangles represent the results obtained by neglecting the joint etfects ofstitfeners
and by including those values from the assumption that the gradient ofthe in-plane stress resultant

is zero, respectively.
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90

80 ..-70 ..
i 60

...
>:: 50..
~ 40
c 30

20

10

0
0

Method A (without joint effect)
Method B (without joint effect)
Method A (with joint effect)
Method B (with joint effect)

2 3 4 5 6 7 8 9 10

hyll

Fig. 8. Joint effects on the torsional rigidity Don for the orthogonally stiffened, rectangular plate
(bo' = b.o = t, h. = hy , d, = dy = lOt). The curve shows D.o' normalized by the torsional rigidity
D•...(iso.) of the unstiffened plate for the stiffener height h)t. The solid lines with diamonds and with
dotted rectangles represent the results obtained by neglecting the joint effects of stiffeners and by
including those values from the concept of the adjusted centroid, respectively, and the solid lines
with rectangles and with triangles represent the results obtained by neglecting the joint effects of
stiffeners and by including those values from the assumption that the gradient of the in-plane stress

resultant is zero, respectively.

stiffener heights in the symmetrically oblique stiffening case, respectively. In Fig. 8, it can
be seen that as the stiffener height increases, the equivalent torsional rigidity increases and
the rigidities by method A are larger than those by B. The torsional rigidities obtained by
considering the joint effects are the same as those by neglecting the joint effects. In Figs 9
and 10, it can be seen that the rigidities by method A are larger than those by B and the
discrepancy is the largest at the stiffening angle 6, = 45°. For various stiffening angles and
stiffener heights, however, the rigidities obtained by considering the joint effects are a little
larger than those by neglecting the joint effects.

Figures 11-13 show the comer deflections of the plate We> normalized by the deflections
wc{iso.) of the unstiffened plate at the comer, for various stiffener heights and stiffening

60
Method A (without joint effect)

50 Method B (without joint effect)
Method A (with joint effect)

Ci 40 Method B (with joint effect)

.lQ

i 30
}
c 20

10

0~~r-t...,.........,................1"""'T"""'""T'"""''''''''''''''''''~
o 10 20 30 40 50 80 70 80 90

Stiffening Angle 8s

Fig. 9. Joint effects on the equivalent torsional rigidity Dxy for the symmetrically oblique stiffened,
rectangular plate (b, ... t, h, ... 4t, d, ... lOt). The curve shows D.y normalized by the torsional rigidity
D....<iso.) of the unstiffened plate for the stiffening angle 8,. The solid lines with diamonds and with
dotted rectangles represent the results obtained by neglecting the joint effects of stiffeners and by
including those values from the concept of the adjusted centroid, respectively, and the solid lines
with rectangles and with triangles represent the results obtained by neglecting the joint effects of
stiffeners and by including those values from the assumption that the gradient of the in-plane stress

resultant is zero, respectively.
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Fig. 10. Joint effects in the equivalent torsional rigidity D... for the symmetrically oblique stiffened,
rectangular plate (bs = t, ds = lOt, 8. = 45'). The curve 'shows D.... normalized by the torsional
rigidity D....(iso.) of the unstiffened plate for the stiffener height h,/t. The solid lines with diamonds
and with dotted rectangles represent the results obtained by neglecting the joint effects of stiffeners
and by including those values from the concept of the adjusted centroid, respectively, and the solid
lines with rectangles and with triangles represent the results obtained by neglecting the joint effects
of stiffeners and by including those values from the assumption that the gradient of the in-plane

stress resultant is zero, respectively.

angles in both stiffening cases with point-supported three corners under the lateral point
load at one corner (pure torsion problem). The results are obtained by using the equivalent
torsional rigidity DxY' From Fig. 11 it is observed that the relative deflection decreases with
increasing hy / t for the orthogonal stiffening case. As shown in Fig. 11, the relative deflections
obtained by method A are far smaller than those by method B without regard to the joint
effects. In Fig. 12, it can be seen that the values by method B are smaller than those by A
for various stiffening angles and the discrepancy increases as the stiffening angle Os becomes
close to 0° and 90°, and that the joint effects are small. In Fig. 13, it can be observed that
the relative deflections at the stiffening angle Os = 45° decrease with increasing h./t as in
Fig. 12.

Method A (without joint effect)
Method B (without joint effect)
Method A (with joint effect)
Method B (with joint effect)

5 6 7 8 9 10

hyll

432
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0.6
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0.3

0.2

0.1 of ..,..-r-""""T"""-r-.....,.....=;:~~'-I~ .....0.0+
o

fA

I

Fig. 11. Joint effects in a pure torsion problem for the orthogonally stiffened, rectangular plate with
point-supported comers under the lateral comer load (bx = bv = t, hx = hy , cl. = dv = lOt). The
curve shows the comer deflection w. normalized by the value wc(iso.) of the unstiffened plate for
the stiffener height h,/t. The solid lines with diamonds and with dotted rectangles represent the
results obtained by neglecting the joint effects of stiffeners and by including those values from the
concept of the adjusted centroid, respectively, and the solid lines with rectangles and with triangles
represent the results obtained by neglecting the joint effects of stiffeners and by including those
values from the assumption that the gradient of the in-plane stress resultant is zero, respectively.
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0.6 .. Method A (without joint effect)
0.5 .g. Method B (without joint effect)

• Method A (with joint effect)

0.4 ... Method B (with joint effect)
d
.!II
'U" 0.3

~
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0.0
0 10 20 30 40 50 60 70 80 90

Stiffening Angle 8s

Fig. 12. Joint effects in a pure torsion problem for the symmetrically oblique stiffened, rectangular
plate with point-supported corners under the lateral corner load (bs = I, hs = 4/, ds = 10/). The
curve shows the corner deflection w, normalized by the value w,(iso.) of the unstiffened plate for
the stiffening angle Os' The solid lines with diamonds and with dotted rectangles represent the results
obtained by neglecting the joint effects of stiffeners and by including those values from the concept
of the adjusted centroid, respectively. and the solid lines with rectangles and with triangles represent
the results obtained by neglecting the joint effects of stiffeners and by including those values from

the assumption that the gradient of the in-plane stress resultant is zero, respectively.

Accuracy of the approximate solution
Figures 14-16 show the accuracy of the approximate values wm(app.) with respect to

the accurate values wm(acc.) for the midpoint deflection in both stiffening cases with simply­
supported edges under uniform lateral loads. From Fig. 14 it can be seen that in the
orthogonal stiffening case, the values obtained by method B increase a little and those by
method A decrease a little with increasing hy/t regardless of the joint effects. From Fig. 15
it can be observed that the values by method B agree well with the accurate values without
considering the joint effects and the discrepancies increase a little as the stiffening angle 8.
becomes close to 0° and 90° but the discrepancies for method A are much larger than those
for B. In Fig. 16 it can be seen that the values by method B agree well with the accurate

2 3 4 5 8 7 8 9 10

11811

.. Method A (without Joint effect)

.g. Method B (without joint effect)
• Method A (with joint effect)
... Method B (with joint effect)

1.0
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I 0.5
3: 0.4
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0.0 .f-,..,.......,...::~................._~
o

Fig. 13. Joint effects in a pure torsion problem for the symmetrically oblique stiffened, rectangular
plate with point-supported corners under the lateral corner load (bs ... I, ds = 10/, 8s ... 45°). The
curve shows the corner detlection w. normalized by the value w.(iso.) of the unstiffened plate for
the stiffener height hs/I. The solid lines with diamonds and with dotted rectangles represent the
results obtained by neglecting the joint effects of stiffeners and by including those values from the
concept of the adjusted centroid, respectively, and the solid lines with rectangles and with trian~
represent the results obtained by neglecting the joint effects of stiffeners and by including those
values from the assumption that the gradient of the in-plane stress resultant is zero, respectively.
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~ Method B (without joint effect)
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Fig. 14. Accuracy of approximate midpoint deflection w..(app.) for the orthogonally stiffened,
rectangular plate with simply-supported edges under a uniform lateral load (bx = b, = t, hx = hy ,

fl.. == dy = 10/). The curve shows W.,(app.) normalized by the accurate value w..(acc.) for the stiffener
height h•./t. The solid lines with diamonds and with dotted rectangles represent the results obtained
by neglC:cting the joint effects of stiffeners and by including those values from the concept of the
adjusted centroid, respectively, and the solid lines with rectangles and with triangles represent the
results obtained by neglecting the joint effects of stiffeners and by including those values from the

assumption that the gradient of the in-plane stress resultant is zero, respectively.

values but the values by method A decrease considerably for various hsjt at the stiffening
angle Os = 45° without regard to consideration of the joint effects.

5. CONCLUSIONS

In this study the equilibrium equations for stiffened plates with arbitrarily oblique and
equally spaced eccentric stiffeners in which the joint effects of the stiffeners are taken into
account are derived by applying the principle of minimum potential energy.
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I .. Method A (without joint effect)
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~
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0.90 ... Method B (with joint effect)
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Stiffening Angle 9s

Fig. 15. Accuracy of approximate midpoint deflection w.,(app.) for the symmetrically oblique
stiffened, rectangular plate with simply-supported edges under a uniform lateral load (b, = I, h, = 4/.
d, - 10/). The curve shows w.,(app.) normalized by the accurate value w..(acc.) for the stiffening
angle 6,. The solid lines with diamonds and with dotted rectangles represent the results obtained
by neglecting the joint effects of stiffeners and by including those values from the concept of the
adjusted centroid, respectively, and the solid lines with rectangles and with triangles represent the
results obtained by neglecting the joint effects of stiffeners and by including those values from the

assumption that the gradient of the in-plane stress resultant is zero, respectively.
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Fig. 16. Accuracy of approximate midpoint deflection w..(app.) for the symmetrically oblique
stiffened, rectangular plate with simply-supported edges under a uniform lateral load (h, = t,
d, = lOt, 6, = 45°). The curve shows w..(app.) normalized by the accurate value w..(acc.) for the
stiffener height h,lt. The solid lines with diamonds and with dotted rectangles represent the results
obtained by neglecting the joint effects of stiffeners and by including those values from the concept
of the adjusted centroid, respectively, and the solid lines with rectangles and with triangles represent
the results obtained by neglecting the joint effects of stiffeners and by including those values from

the assumption that the gradient of the in-plane stress resultant is zero, respectively.

The closed-form solutions and the approximate solutions by the Huber-type equation
for the lateral deflection of the plate are obtained for the orthogonal and symmetrically
oblique stiffening cases with simply-supported four edges under uniform lateral loads.

From the numerical results, the joint effects on the closed-form solutions and on the
equivalent rigidities and the accuracy of the approximate solutions are summarized as
follows.

(1) The lateral deflection of the plate can be reduced a little by considering the joint
effects of stiffeners for various stiffener heights in the orthogonal stiffening case and for
various stiffening angles in the symmetrically oblique stiffening case with simply-supported
four edge under uniform lateral loads.

(2) The joint effects of stiffeners on the equivalent bending rigidity Dx are very small
for both stiffening cases and those effects on the equivalent torsional rigidity Dxy are also
very small for the symmetrically oblique stiffening case.

(3) The Dx obtained by using the concept of adjusted centroids are almost the same as
those values obtained by assuming that the gradients of the in-plane stress resultants are
zero for both stiffening cases and the Dxy obtained by the former method are also almost
the same as those obtained by the latter method for the symmetrically oblique stiffening
case, but the Dxy by the former method are evaluated to be higher than the values by the
latter method for the orthogonal stiffening case.

(4) The approximate values of the lateral deflection obtained by the latter method by
considering the joint effects of the stiffeners are very close to the accurate values for various
stiffener heights and stiffening angles in both stiffening cases.
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APPENDIX

Stiffness coefficients

CII = C+ EhD[II. cosl 8.(A 1 cosl 8.+AlcoSl 8,+2AJcos 8. cos 8,)

+ II, COSl 8D(B I cosl 8. + B% COSl 8, + 2BJ cos 8. cos 8D)]

EhD{[A 1 .% '18 %Cil = VC+T II. Tsm 28.+A l(sm .cos 8D

+cosl 8. sinl 8D)+A J sin 28. sin (8. +8D)]

+II{B,(sinl 8.cos% 8, +cosl 8.sinl 8,)

+ ~% sin% 28,+ BJ sin 28, sin (8.+8,)]}

Cn = E;D {II. {A ,cos% 8. sin 28.+ ~% (cosl 8. sin 28,+cos%8, sin 28.)

+AJ[cor 8. sin (8.+8,)+sin 28. cos 8. cos 8,]- ;(~~cosl8. sin 28,}

+II,{~' (cosl 8. sin 28, +cos% 8, sin 28.)+B% cos% 8, sin 28D

+ B)[cosl 8Dsin (8. +8,) + sin 28, cos 8. cos 8,) - ;(~~ COSl 8Dsin 28.}}

C14 "" e,Eh,[II. COSl 8.(A 1 COSl 8. + A%cosl 8D+ 2A Jcos 8. cos 8,)

+ II, cos% 8,(B1 cos% 8. + B% cor 8, + 2B] cos 8. cos 8,))

eDEh, { [A, . 1 • % %
C"=-2- II. T sm 28.+A l(slD 8.cos 8,

+cos% 8.sinl 8,)+A]sin 28. sin (8. +8,)]

+"{B,(sin% 8.oos% 8,+cos% 8. sinl 8D)

+ ~% sinl 28, + BJ sin 28, sin (8. +8D)]}

CI6 = 2e,CIl

Cn ". C+Eh,[II.sin%8.(A, sin1 8.+A%sin1 8,+2AJsin 8. sin 8D)

+11, sinl 8,(B, sinl 8. +B% sin% 8,+2B) sin 8. sin 8,))
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C23 = E:p
{II.{AI sin29. sin 29. + ~2 (sin29. sin 29,+sin2 9,sin 29.)

+A 3[sin28. sin (9.+9p)+sin 29. sin 9. sin 9p]- ;(~~ sin29. sin 28,}

+II{~' (sin28. sin 28p +sin29p sin 28.)+B2 sin29, sin 28p

+B3lsin29p sin (9. +9p)+sin 29psin 9. sin 9p]- ;(~~ sin29, sin 29.J}

C14 = CIS

C2S = epEhp[II. sin29.(A, sin28. +A 2 sin29p+2A 3 sin 9. sin 9p)

+"p sin29p(B , sin28. +B2 sin29p+2B3 sin 9. sin 9p)]

C 26 = 2epC 23

C I-v C Ehp{[ • 229 . 29 . 9
II =-2- +4 ". Alsm .+A2sm .sm2,

+2A 3 sin 29. sin (9. + 9,) - 'IC
: v

rP
sin 29. sin 28,]

+"{B I sin 29. sin 29, + B2 sin229,

+2B3 sin 29psin (9. +9p)- 'IC:VrP
sin 29. sin 29,J}

C3• = epCIl

Cll = epC23

C epEhp{[ . 229 . 29 . 9
36 = -2- II. AI sm .+A2sm .sm 2 p

+2A 3 sin 29. sin (9.+9p)- 'IC:VrP
sin 29. sin 29,J

+"{B I sin 29. sin 29,+B2 sin229,

+2B3 sin 28, sin (9.+8p)- 't:vrP
sin 29. sin 29,J}

C•• = D+E[icos2 9. (A ,cos29.+A 2 cos29,+2A 3 cos 9. cos 9,)

+ ~ cos29p(B I cos29. + B2 cos29, + 2B3 cos 9. cos 9,)J

G (J. .229 J,. 229 )+"4 ;r.sm '+d;sm ,

E{l. [A I • 2 • 2 2C4S =vD+2" ;r. T S1n 28.+A2(sm 9.cos 9,

+cos29.sin29p)+A 3 sin 29. sin (8. +9,)J

+ ~ [B,(Sin29.cos29,+cos29. sin2 9,)

+ ~2 sin228,+B3 sin 28, sin (8.+8,]- ~(t.sin229.+ ~sin229,)

C.6 = E{i {AI cos29. sin 29.+ ~2 (cos29. sin 29,+cos29, sin 29.)

+A 3[cOS29. sin (9. +9,) + sin 29. cos 9. cos 9,]- ;(~~ cos29. sin 29,}
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+ ~ {~l (COS! 8. sin 20p + cos! 8p sin 28.) + B! cos! 9p sin 28p

+ B) [cos! 9p sin (9.+9p)+sin 28, cos 9. cos 9pl- ;(~s:~ cos! 0, sin 28.}}

G(J.. 8 J,. 8 )-- -sm4 --sm4,
4 d. • d,

Css '= D+E[i sin28.(A I sin28. +A zsin28,+2A)sin 8. sin 8,)

+ ~ sin! 8p(B, sin! 8. + B zsin28, + 2B) sin 8. sin 9p)]

G(J. . 229 Jp • 229 )
+4 ;r.sm '+dpsm ,

CS6 '= E{i {A I sin2 8. sin 20. + ~z (sinz8. sin 29,+sin28, sin 28.)

+A)[sin! 8. sin (9. +O,)+sin 29. sin 8. sin 9,1 - ;(~:~ sin29. sin 28p}

+ ~ {~I (sin2 8. sin 26,+sinz9, sin 28.)+Bzsin29, sin 29,

+ B) [sin28, sin (9. +6,) +sin 28, sin 9. sin 9,] - ;(~:~ sin2 9, sin 28.}}

G(J.. 6 J,. 9)+- -sm4 .--sm4,
4 d. d,

C66 '= 2(l-V)D+E{i[AI sinz29.+Azsin 29. sin 29,

+ 2A) sin 29. sin (8. +9,) - ~ I
C
: V

tP
sin 29. sin 29,]

+ ~[BI sin 29. sin 29,+Bzsinz29,

+2B) sin 29, sin (9. + 9,) - ~ I
C
: v

tP
sin 29. sin 29,]}

(
J. z 9 J, z29 )+G ;r.cos 2 .+ dpcos ,

where

t+h,
e'=-2-

b.hJ z h
1. '= 12+e,b. ,

b,hJ z
1, '= 12+e,b,h,

J. '= Kb;h,

J, '= KbJh,.

Boundary conditiofU
The boundary conditions to be satisfied at x ,., 0 and a are

(AI)

(A2)

[C. ,u... + C.ZV., + C.,(u., + v...) - C..w..... - C.sw." -C.6w...,]... + (C6I u... + C62v., + C6)(u., + v )

-C6.W.... -C6SW... -C66W L '= 0 or w '= 0

C.IU +C.Zv.,+C.)(u.,+v )-C••W -CHW... -C46W , = 0 or w... '= 0

(CI'U +CIZV.,+CI3(u..• +V )-CI4W -C'SW.,.. -CI6W J..,. = 0 or u = 0
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and those at y = 0 and bare

799

(A3)

[C$IU., +C$lv... +C$3(U..v +v.,) - C$OW.xx - C$$w..v.v - C$'W.x..l .. + [CSIU.x +C$lv... +Cn(u..• +v.,)

-C$Ow.xx-Cssw..... -CHw.,.•L = 0 or W=0

C$lu.. +Cnv.y+Cn(u.y+V.x)-C$OW..x-CS$w -Cs.w.... = 0 or w..v = 0

[C2'U.'+C22V +C23(U +V..)-C2.W."-CBW -C2.W.x..L = 0 or v = 0

C3IU..,+CJ2V +C33(U +V..)-CJ4W...,-C3$W -C3.W.x.v =0 or U= O. (A4)

Equivalent rigidities
From eqn (AI), equivalent bending and torsional rigidities obtained on the assumption that the normal

strain is zero at the adjusted centroid of the cross-section in each direction can be represented as follows:

where

D., = Coo-C,oex

H = CO$ +C 12exe.. + HC66 +C 33 (ex+e.. )2j

D. = C$$-CBe..

_ C'O
ex=~

_ C
B

e.. = Cn '

(AS)

(A6)


